Ror2 Enhances Polarity and Directional Migration of Primordial Germ Cells
نویسندگان
چکیده
The trafficking of primordial germ cells (PGCs) across multiple embryonic structures to the nascent gonads ensures the transmission of genetic information to the next generation through the gametes, yet our understanding of the mechanisms underlying PGC migration remains incomplete. Here we identify a role for the receptor tyrosine kinase-like protein Ror2 in PGC development. In a Ror2 mouse mutant we isolated in a genetic screen, PGC migration and survival are dysregulated, resulting in a diminished number of PGCs in the embryonic gonad. A similar phenotype in Wnt5a mutants suggests that Wnt5a acts as a ligand to Ror2 in PGCs, although we do not find evidence that WNT5A functions as a PGC chemoattractant. We show that cultured PGCs undergo polarization, elongation, and reorientation in response to the chemotactic factor SCF (secreted KitL), whereas Ror2 PGCs are deficient in these SCF-induced responses. In the embryo, migratory PGCs exhibit a similar elongated geometry, whereas their counterparts in Ror2 mutants are round. The protein distribution of ROR2 within PGCs is asymmetric, both in vitro and in vivo; however, this asymmetry is lost in Ror2 mutants. Together these results indicate that Ror2 acts autonomously to permit the polarized response of PGCs to KitL. We propose a model by which Wnt5a potentiates PGC chemotaxis toward secreted KitL by redistribution of Ror2 within the cell.
منابع مشابه
Review of Differentiation and Proliferation of Primordial Germ Cells in Culture
Primordial germ cells (PGCs) are highly specialized cell population that arises from the epiblast in vivo. There are three critical steps in the life cycle of these cells: 1-Specification 2-migration and proliferation 3-prenatal and postnatal sex specific development. Specification of germ cells in epiblast occurs due to signals secreted from extraembryonic tissues. Primordial germ cells are re...
متن کاملConnexin43 Modulates Cell Polarity and Directional Cell Migration by Regulating Microtubule Dynamics
Knockout mice deficient in the gap junction gene connexin43 exhibit developmental anomalies associated with abnormal neural crest, primordial germ cell, and proepicardial cell migration. These migration defects are due to a loss of directional cell movement, and are associated with abnormal actin stress fiber organization and a loss of polarized cell morphology. To elucidate the mechanism by wh...
متن کاملI-18: Avian Chimeras and Germ Cell Migration
Background: In avian species, the germ line stem cell population arises outside of the embryonic gonad and proceeds on a circuitous migration to the germinal epithelium. Specifically, in the avian embryo, the process of germ line stem cell migration proceeds through a series of active and passive migratory phases. The germline stem cells or primordial germ cells (PGCs) located in the epiblast o...
متن کاملDiscrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling
Inheritance depends on the expansion of a small number of primordial germ cells (PGCs) in the early embryo. Proliferation of mammalian PGCs is concurrent with their movement through changing microenvironments; however, mechanisms coordinating these conflicting processes remain unclear. Here, we find that PGC proliferation varies by location rather than embryonic age. Ror2 and Wnt5a mutants with...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کامل